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A mechanical system, consisting of a non-variable rigid body (a carrier ) and a subsystem, the configuration and composition of 
which may vary with time (the motion of its elements with respect to the carrier is specified), is considered. The system moves 
in a central force field at a distance from its centre which considerably exceeds the dimensions of the system. The effect of 
the system motion about the centre of mass on the motion of the centre of mass, which is assumed to be known, is ignored 
(the analogue of the limited problem [l] for a rigid body). The necessary and sufficient conditions for a quadratic integral of the 
motion around the centre of mass to exist are obtained in the case when there is no dynamic symmetry. It is shown that, for a 
quadratic integral to exist, it is necessary that the trajectory of the motion of the centre of mass should be on the surface of a 
certain circular cone, fixed in inertial space, with its vertex at the centre of the force field. If the trajectory does not lie on the 
generatrix of the cone, only one non-trivial quadratic integral can exist and the initial system, in the presence of this quadratic 
integral, reduces to autonomous form. For the motion of the centre of mass along the generatrix or the motion of the system 
around a ftxed centre of mass, the necessary and sufficient conditions for a non-trivial quadratic integral to exist are obtained, 
which are generalizations of the energy integral, the de Brun integral [2] and the integral of the projection of the kinetic moment. 
When three non-trivial quadratic integrals exist, the condition for reduction to an autonomous system describing the rotation 
of the rigid body around the centre of mass and integrable in quadratures are indicated [3,4]. 0 2001 Elsevier Science Ltd. All 
rights reserved. 

1. THE EQUATIONS OF MOTION 

Suppose E0 is an inertial frame of reference with origin at the centre 0 of a force field, El is an orbital 
frame of reference with origin at the centre of mass C of a mechanical system, E2 is a frame of reference 
connected with the carrier, and E3 is the principal frame of reference with origin at the point C and 
axes coinciding with the principal central axes of inertia of the system. 

We will choose an orthobasis {&} of the frame of reference El as follows: g3 = r’O, r = OC, 
g2 = (r x (r);)‘, g, = g2 x g3. Here (); is the derivative with respect to time in frame of reference 
Ei and a0 is the unit vector of the vector a. We can obtain the following formulae for the derivatives of 
the unit vectors gi in frame of reference Eo 

Here 

(g;); = Rxg;, i= 1,2,3, fB=k,g, +k,g, (1.1) 

k, = 1 r x (r); I rm2, k3 = (r,(r);,(r);) I rx(r)i ls2r 

Putting y = g3 and denoting the velocity of the centre of the mass by u, we can also write 

(1.2) 

k, =u (yxdy/dsI, k, =u lyxdy/dsI-2 (y, dylds, d2ylds2) (1.3) 

In this limited problem the function r(f) is specified in frame of reference Eo, and consequently, the 
functions k2(t) and kg(t) are also specified. The position of the frame of reference El with respect to 
E. is also known at each instant of time. 

The equations of rotational motion of the carrier of a system of variable composition are known [5]. 
Another form of these equations, proposed in [6,7], has the form 
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(Y); =yxx,+Ax,,+L, Y=JX2o+G2 (l-4) 

Here J is the inertia operator of the system at its centre of mass. xij is the angul?r velocity of the 
frame of reference Ei with respect to Ej, L =M+M{+(G2);,M=Me+M,+M,MeandM,are 
the principal moments (with respect to C) of the external and reactive forces, M* is a certain control 
moment, specified in Ez, and 

Gj =Cm,r, x(r,)T, Mf =-Zm,r, x(r,)t* (1.5) 

The summation is carried out over all elements of the system, m, is the mass of the point mass M,, 
and r,, = CM,,. The symmetrical operator A is given by the identity 

hx=J’x-;C,m,[r,‘x(xxr,)+r,x(xxr,’)] 

The following equalities hold [7] 

Jxg=Gj-G;, hX,=Mf-MI+(Gj);-(G,): (1.6) 

When the dimensions of the system are much less than the distance from its centre of mass to the 
centre 0 of the field with potential U(r), the principal moment of the external forces is 

M’ = py x Jy, p = -r(rtU’(r))’ 

System (1.4), in this case, taking into account properties (1.6), can be written in the form 

(1.7) 

y’=yxx+Ax+pyxJy+N, y=Jx+K (1.8) 

o’=o;, x=x30, K=G,, N=M{+K’+M,+M’ 
3 

For a Newtonian gravity field p = 3)~~~. 
Taking formulae (1.1) into account, we can supplement the system with Poisson’s equations 

gf = gi x(x - a), i = 1,2,3 (1.9) 

System of equations (1.8) and (1.9), when there is no dynamic symmetry, will be called the fundamental 
dynamical system. 

. 2. BASIC RESULTS 

Equations (1.9) have six trivial integrals 

g,2 = const, (gi,gj)=const 

We know [l], that in the case of the motion of a gyrostat in a Newtonian field in a circular orbit the 
fundamental dynamical system has a quadratic integral (integral (2.2) with constants r, kz, p = 3pre3 
and k3 s 0), while the motion of the rigid body around a fixed centre of mass possesses three non-trivial 
quadratic integrals: the energy integral, the integral of the projection of the kinetic moment and the 
de Brun integral [2] (integrals (2.28)-(2.30) withp = 3prm3 and r = const). 

The arbitrary quadratic integral of the fundamental dynamical system can be written in the form 

(YtFY)+i [(gj,~gj)+(QjY,gj)+(nj,gj)l+(m,Y)+h(t)+ 
i=l 

+ (R,g2.g3)+(R2g3’gl)+(R3gl,g2)=const (2.1) 

Below we will solve the problem of obtaining the conditions for non-trivial quadratic integrals to exist 
and we will obtain in explicit form the symmetrical operators F, Pi, the operators Qi, Ri, and the 
parameters ni, m and h. We will assume that the operators and parameters listed here are differentiable 
functions of time. 
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We will consider separately the case when k2 = 0, corresponding to the centre of mass at rest in the 
frame of reference Ee, or its motion along a straight line, fixed in Eo, passing through the centre of the 
field, and the case when k2 # 0. 

Theorem 1. For a non-trivial quadratic integral of the fundamental dynamical system to exist in the 
case when k2 # 0 it is necessary and sufficient for the following conditions to be satisfied 

1) the centre of mass of the system moves along the surface of an arbitrary circular cone, fured in 
inertial space, with vertex at the centre of the force field; 

2) the velocity 2) of the centre of mass varies as follows: 

3) the inertia operator of the system varies similarly, J = T&; 
4) A = (In 0’5, < = k2q; 
5) N = K’; 
6) K = C&. 

Here J,, and Kc are certain constant operators and vectors in the principal frame of reference. The integral 
in this case can be written in the form 

P-‘[(x,Jox) + p(y. JoyI - 2(Jox + k2K,, a)] = const (2.2) 

or, in equivalent form, 

~-‘[(x~,,J~x~,)+~(y.J~y~-(~,R,~~Z)-Zk~(K~,~>l=const (2.3) 

Condition 1 is satisfied, in particular, for any trajectory in a plane containing the centre of the force 
field. 

Note that, when the centre of mass C of the system moves along the surface of the cone indicated 
in Condition 1, the orbital frame of reference Et chosen above has the following orientation: the unit 
vector gi is directed along the tangent to the circular section of the cone, passing through the point C, 
theunit vector g2 is directed along the normal to the surface of the cone and the unit vector g3 is directed 
along the generatrix of the cone. 

For free motion of a point mass in a central field in a Kepler orbit with velocity uk we have 
uklr x dr/dsl = const, and Condition 2 for the velocity TV of the controlled motion of the centre of mass 
can be written in the form 

u =constlp+ rt, 

When the conditions of Theorem 1 are satisfied, the system reduces to the following autonomous 
form 

J,,du I dz = (Jou + K,) x u + c3g3 x Jog3 

dgildZ=giX(U-g,-C,g:,), i=l,2,3 

Here the differentiation is in the frame of reference E3, c3 = (~2)~’ and 

(2.4) 

(2.5) 

u = x/k,, dz = k,dt = 1 to x dr”l (24 

It can be checked directly that the integral of system (2.4), (2.5) is the following integral, which is 
identical with integral (2.2) (Proposition 32) 

(u,Jou~+cj(gj,J~g~)-2(Jou +K,,g, + cig3) =const (2.7) 

It follows from Theorem 1 that, in the special case of the motion of a system of constant composition 
(A = 0) in a Newtonian field (p = 3pe3), for a quadratic integral to exist when kz f 0 it is necessary 
and sufficient for Condition 1 of Theorem 1 to be satisfied and also the conditions 

J=k;‘J,, N=:O, K=Ko, u =t2rX )rxdr/dsl-’ 
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Theorem 2. If, when k2 = 0, a non-trivial quadratic integral of the fundamental dynamical system exists, 
it can be represented in the form 

(Jx,FJx)+(y,Q)+ v(Jx+K,y)= const (2.8) 

The eigenvalues cpi and psi of the operators F and P3 have the form 

‘p; = (pa;)-‘oi. ai = A,~, (2.9) 

pu =-JI:Ats; (2.10) 

and the constants oi are related by the condition 

0, +cr2 +crs =0 (2.11) 

For the integral to exist it is necessary and sufficient for the following conditions to be 
satisfied 

vh+v’J=O (2.12) 

vN+v’K=O (2.13) 

hii(o;~j +Oi~i)= K’k’(ai~j -Oj~i)8ijk (i,j,k) (2.14) 

o,(N -Km)“’ =O, i=l,2,3 (2.15) 

o,[(ln pai)* - 2hijA,?] = 0, i = 1,2,3 (2.16) 

Here and henceforth 

(lll)(i) = (IYl,ei) 

Note that, for a quadratic integral in complete form (all oi f 0), condition (2.15) takes the same 
form as in the problem of the motion of a system around a fixed point of a carrier in a uniform 
gravitational field [8] and in the problem of free motion [7], N = K’. This condition can be written in 
the form 

M{+M,+M*=O 

Below we will show (Proposition 21), that integral (2.8) can be written in the form 

~,[x, Jx)+ p(y. Jr)]+ w2[(JN2 - PWW~Y, J-%I+ 

+ v(Jx+K,y)=const (2.17) 

Under certain conditions this integral can be expanded in three non-trivial quadratic integrals, which 
are generalizations of the energy integral, the de Brun integral and the integral of the projection of the 
kinetic moment. 

When the integral of the projection of the kinetic moment exists, the system reduces to the form 
(Proposition 28) 

. v =vxx+pyxJ’y, y*=yxx, v=J’x+K’ (2.18) 

Theorem 3. If, when k2 = 0, three independent non-trivial quadratic integrals of the fundamental 
dynamical system exist, they can be written in the form 

v*(Jx, Ji’Jx) + (y, Joy) = const (2.19) 
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(vJx)~ - A,,A,A,,(y. Ji’y) = const (2.20) 

v( Jx, y) = const (2.21) 

For these integrals to exist it is necessary and sufficient for the following conditions to be satisfied 

A=-(lnv)‘J, K=O, N=O, pv2ai =aio, i=1,2,3 (2.22) 

When the conditions of this theorem are satisfied or, which is the same thing, when there are three 
non-trivial quadratic integrals, the system can be reduced to the form 

where the differentiation is carried out in the frame of reference E3 and 

w = vJ,-‘Jx, dt = d’ hv’ h=pv2 
A,A2A3 

A10A20A30 

(2.23) 

(2.24) 

When./ = hlo, we obtain the well-known autonomous system, integrable in quadratures [3,4], which 
describes the rotation of a rigid body around a fixed centre of mass. 

Theorem 4. When k2 = 0 and the conditions K = 0, N = 0 are satisfied as well as the conditions 

J = (pv*)-% Jo, A = -(pv2)-%(I” v)‘J, 

the fundamental dynamical system can be reduced to the autonomous system 

(2.25) 

dy J,~=(J,z)xz+yxJ,y. x=yXz (2.26) 

z=p -K x, dz = p%dt (2.27) 

When the conditions of Theorem 4 are satisfied, integrals (2.19)-(2.21) can be written in the form 

p-‘(J,x,x)+(y,J,y)=const (2.28) 

P-‘(J~x)~ - A,oA20A30(y. Ji’y) = const (2.29) 

pmK (J,x, y) = const (2.30) 

3. PROOF OF THEOREM 1 

Proposition 1. The operators PI and P2 are proportional to the identity operator E. 

Proof. Differentiating integral (2.1), by virtue of the fundamental dynamical system we obtain an identity which 
we will call the fundamental identity (we will not write it here due to its length). Separating out, in this identity, 
terms withgrx, we obtain the identity (PIgI, gr, x) I 0, which is only satisfied when Pr = cp(t)E. Equating the terms 
with g2x to zero we obtain the condition P2 = u(:)E. 

Proposition 2. The operators Z?i (i = 1,2,3,) are proportional to the identity operator. 

Proof. Separating out, in the fundamental identity, the terms with glg2x (taking into account the fact that 
g, x g2 = gs), we obtain the following identity (B* is the operator conjugate to B) 

This identity is only satisfied if R3 = kE. In the same way we can obtain similar representations for the operators 
R, and RZ. 
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Proposition 3. The operators Qi have the form 

Q, =O, Qi=ViE, i=2,3 

Proof. The following identity is obtained from the fundamental identity by separating out terms with x’gt 

(Q;g,.Jx,x)+(Q,Jx,g,.x)~O 

that is equivalent to the identity 

Q,(Jxxx)+xxQ,JxrO 

which is only satisfied if Q, = v,E. Equating terms withx*gz andx*g, to zero in the fundamental identity we obtain 
the conditions Qi = vfi (i = 2, 3). If we now separate out, in the fundamental identity, the terms with g2g3, we 
obtain the identity 

which, when p # 0, is only satisfied if vi = 0. 

Note that when there are trivial integrals, the terms (gi, PIgI), (gz, Pzg2) in integral (2.1), by virtue 
of Proposition 1, are equal to q(t) and v(t) respectively, and they can be included in the term h(t). Terms 
of the form (R,&, a) are equal to zero by virtue of Proposition 2. 

Integral (2.1) and the fundamental identity can now be written in the form 

(y,Fy)+(g3.p3g3)+(yIV2g2 +V3g3)+ i (n;,gi)+(m.Y)+h =const (3.1) 
i=l 

+ (2P3g3 +n3,g3.x)+(V2g2 +V3g3yAX+N)+ 

+ k2(2qg3+n3.g,)+(n2,g2,x)-k3(n21g~)-tn~,g~,x)- 

- k2(n,,g3)+k3(n,.g2)+(Vgk2 -v2k3)(Ylgl)+(YvF’Y)+ 

+ (g,,P;g,)+(y,V;g, +V;&)+;t (nfvgi)+(m’*Y)+h’ E” (3.2) 
i=l 

Proposition 4. The operator F can be represented in the form 

F=y,J-‘+I@ 

Proof. Separating out terms withx3 from identity (3.2), we obtain the identity 

(F./x,Jx,x) = 0 

(3.3) 

which, when the eigenvalues, Ai of the operator J are not equal to one another, is satisfied if and only 
if the operator F has the form (3.3). 

Proposition 5. The operator P3 can be represented in the form 

P3 = PO.‘, JyhA I&W-‘) 

Proof. Grouping the terms withxg: in identity (3.2), we obtain the identity 

(3.4) 

p(FJx.g3.Jg3)+(qg3,g3.x)~0 

which can be written in the equivalent form 

plF(g3 x Jg3 I= g3 x Se3 (3.5) 

Assuming g3 = q, we obtain (P3ei) x ei = 0, and then ei (i = 1, 2, 3) are the eigenvectors of the operator P3. 
Taking Proposition 4 into account, we can rewrite identity (3.5) in the form 
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P[y,g3XJg3+y*(1*gj)Xg3+W2trJ(g3XJg3)1’g3xqg3 (3.6) 

Here we have used the equality 

D(axb)=(D’b)xa+bxD‘a+trD(axb) 

Identity (3.6) is only satisfied if the operator P3 has the form 

P3 =~(w,J-w~J’+VI~J~~J)+~E 

Since 

5* -JtrJ = AIA2A3Jm1 -(AlA, +A,A3 +A,A,)E (3.7) 

we obtain representation (3.4) for the operator P3. The term kE gives the function k(t), which can be included in 
the term h(r) in integral (2.1). 

Proposition 6. The parameter m has the form 

m=-2FK (3.8) 

Proposition 7. The operator P3 is constant in the frame of reference E3. 

Proof. Taking into account the fact that y = Jx + K, we collect terms with g: in identity (3.2) 

p(2FK+m.g3,Jg3)+(g3.~~g3)~0 

It follows from Proposition 5 that ei are the eigenvectors of the operator PJ. Substituting g3 = e; into the last 
identity, we obtain (e;, P;eJ = 0 (i = 1, 2, 3), whence Proposition 7 follows. The identity considered takes the 
form. 

which is possible for pairwise different Ai, only if 2Fk + m = 0. 

Proposition 8. The following representation holds 

(y, Fy) + (m, y) + h(r) = (Jx, FJx) + const (3.9) 

Proof. Taking Proposition 6 into account in identity (3.2) we separate out terms not containing x 
and g, 

(K.F’K)+(m’,K)+h’=O 

Hence 

h* = -(K,F’K)+2((FK)‘,K)=(K,FK)‘and h=(K,FK)+con 

The left-hand side of (3.9) can now be written in the form 

(Jx+K,F./x+FK)-2(FK,Jx+K)+(K,FK)+const 

which is identical with the right-hand side of this equation. 

Proposition 9. For integral (2.1) to exist it is necessary for the following conditions to be satisfied 

v2 =-2k2y, (3.10) 

W2 = 0 (3.11) 

Proof. Separating out terms with glg3 in identity (3.2), we obtain 
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This identity is only satisfied if pv2J + 2kzPs = 0. Taking Proposition 5 into account, we obtain the 
condition 

v2J+2k#,J-yZA,AZA3J-‘)=O 

Since all the eigenvalues of the operator J are different, this equality is only possible when conditions (3.10) 
and (3.11) are satisfied. 

Proposition 10. When k2 # 0, the operators F and P3 have the form 

(3.12) 

The proof follows from Propositions 4, 5 and 9. 

Proposition 11. For integral (2.1) to exist, the following conditions must be satisfied 

n, =0 

k3vz = k2v3 

Proof. Separating out terms with gtx in identity (3.2) we obtain the identity 

(ni,gt,x)+(k2v3 -k3v2)(Jx,gt)=O 

(3.13) 

(3.14) 

which is only satisfied when conditions (3.13) and (3.14) are satisfied. 

Proposition 12. For integral (2.1) to exist, the following conditions must be satisfied (for i = 
273) 

nj = 0 (3.15) 

v,h+v;J=O (3.16) 

Proof. Grouping terms with g2x and g,x in identity (3.2) we obtain the identities 

vi(g,,hx)+(ni,gi,x)+v~(h,gi)rO, i=2,3 

These identities are equivalent to the following 

vihx+v~Jx+xxnj 20 

Since the operators A and J are symmetrical, the last identities are satisfied only when conditions (3.15) and 
(3.16) are satisfied. 

Proposition 13. When k2 # 0 the following representation holds 

Vi=-2kiWI, i= 2,3 

The proof follows from conditions (3.10) and (3.14). 

Proposition 14. For integral (2.1) to exist, Condition 4 of Theorem 1 and the following condition must 
be satisfied 

k3 = c,k2 (3.17) 

Proof. It follows from conditions (3.16) and Proposition 13 that (k,/k,)‘J = 0, whence we obtain condition (3.17). 
When this condition is satisfied the two conditions (3.16) are equivalent to Condition 4 of Theorem 1, where 

~=(k;W,)-’ (3.18) 

Proposition 1.5. Condition (3.17) is satisfied if and only if the angular velocity of the orbital frame of 
reference has the form 
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R = k2 sin-roe (3.19) 

where e is the unit vector of an arbitrary direction, fixed in frames of reference E0 and El. When this 
condition is satisfied, the centre of mass is shifted along the surface of a right circular cone, fixed in 
inertial space, with vertex at the centre of the force field and with an angle a between the generatrix 
and the axis of the cone, the direction of which is specified by the unit vector e. 

Proof Suppose k3 = ~$2 and kz f 0. Then, taking formulae (1.1) into account, we obtain 

(i-l/k,);, ‘(9.2 +c,g3& =RX@, +c,g3)=RxWk2)=0 

Consequently, when condition (3.17) is satisfied we can write 

R = k2a. (a& =0 (3.20) 

Hence, the angular velocity Q maintains its direction in Ea, but it then also has a constant direction in Ei. The 
orbital frame of reference, being displaced together with a centre of mass of the system, rotates around the fixed 
direction a. 

Multiplying Eq. (1.1) scalarly by a for gs = y, we obtain (a, 7)’ = 0, and consequently, the angle between 
y and a is constant and the trajectory of the centre of mass lies on a cone with vertex at the centre of the 
field. 

We put (a, y) = a cos a = c and transform condition (3.17). By virtue of formulae (1.2) we obtain 

kZ=(yx(y)~~=kZ~-yx(axy)~=kZ~a-cy~=k2asina 

Hence it follows that the constants a and a are related by the condition 

u sin a = 1 (3.21) 

which also enables us to represent the angular velocity Sz in the form (3.19). Further 

k3 = ki2(r. (Y);. (Y); )=k2(y, axy. ax(axy))=k2(a-cy. ca)=ckp(a*-c2)=ck2a2sin2a 

and, taking into account relation (3.21) we obtain k3 = c,k*. Consequently, when condition (3.19) is satisfied the 
functions k3 and k2 are proportional, where cl = c. 

Taking into account the propositions proved above, identity (3.2) can be written in the form 

2w,(x. Ax+N)+(v,g,+v,g,, N)+(Jx. (y,J-‘)‘Jx)+2(K. W,J-‘)‘Jx)+ 

+(v;g,+vjg,, K)-2((~,J-‘K)‘. lx)=0 (3.22) 

Proposition 16. For integral (2.1) to exist, Condition 5 of Theorem 1 must be satisfied. 

Proof Separating out terms with x from identity (3.22), we obtain the condition 

w,N+(w,J-‘)‘JK-J(~,I-‘K)’ =0 

which reduces to the form yI(N-K’) = 0. Hence we obtain condition 5, since the case vi = 0 is eliminated when 
k2 + 0. In fact, when vi = 0, it follows from Propositions 3 and 9-11 that F = P3 = v2 = v3 = 0, and quadratic 
integral (3.1) does not exist. 

Proposition 17. For integral (2.1) to exist, Condition 6 of Theorem 1 must be satisfied. 

Proof Separating out terms with g2 and g3 from identity (3.22), we obtain the condition 

v,N+v;K=O. i=2.3 

which, by virtue of Proposition 16, can be written in the form (ViK)’ = 0. Taking Proposition 13 and formulae (3.17) 
and (3.18) into account, both these conditions can be written in the form ((k,q)-’ K’) = 0, whence the necessity 
of condition 6 follows. 

Proposition 18. For integral (2.1) to exist, Condition 3 of Theorem 1 must be satisfied. 

Proof Separating out terms with x2 from identity (3.22), we obtain the condition 
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2w,A+(J#)V =o 

Substituting the expression for A from ~ndition 4 here, we obtain (n-‘J)’ = 0, whence the necessity of Condition 
3 follows. 

Proposition 19. Integral (2.1) exists only if the velocity of the centre of mass of the system satisfies 
Condition 2 of Theorem 1. 

Proof. By Propositions 7 and 10 

Taking Condition 3 into account, where the parameter n is given by formula (3.18), we obtain the relation 
pk;* = const, whence Condition 2 also fotlows. 

Proposition 20. If integral (2.1) to exist, it can be written in the form (2.2) or (2.3). 

hoofi Integral (2.1) can be reduced to the form (3.1), when, taking into account Proposition 8, 10-13 and 
representation (1.1) for the absolute angular velocity fz of the orbital system, we obtain the following form of the 
integral 

w,I(x, ./x)+p(y. Jy)-2tJxcK, f%l=const 

Taking into account the relation x = x31 + Q we can write this integral in the form 

(3.23) 

Wll(X,,7 Jx,, )+p(y. J-r,-(fl, JR)-2(K. R)J=const (3.24) 

We can change to the forms (2.2) and (2.3) if we take into account Conditions 3 and 6 of Theorem 1, expression 
(3.18) and the relationpkT2 = const, pointed out in the proof of Proposition 18. 

It was shown above that Conditions l-6 are necessary for non-trivial integral (2.1) to exist. These 
conditions are sufficient for the integral to exist, since the fundamental identity holds when they are 
satisfied. The sufficiency of these conditions also follows from the existence of integral (2.7) of system 
(2.4), (2.9, to which the initial system reduces (Proposition 32) when there is a non-trivial quadratic 
integral. Theorem 1 is completely proved. 

4. PROOF OF THEOREM 2 

We will now consider the case when k2 = 0. 

Proposition 21. For a non-trivial quadratic integral to exist in the case when kz = 0 it is necessary 
that the operators F and Ps should have the form (3.3), (3.4), and the condition Pi = 0 and condition 
(3.16) should be satisfied (for i = 3). In this case the integral can be written in the form (2.8) or in the 
form (2.17). 

Proof. Proposition 1-9, 11 and 12 are also retained when k2 = 0. It follows from condition (3.10) that v2 = 0, 
and condition (3.16) is identically satisfied for i = 2. Integral (2.1), taking Proposition 8 into account, can be written 
in the form (2.8), by putting v = v3. If we use representation (3.3) and (3.4) for the operators F and P3, the integral 
can be written in the form (2.17). 

Identity (3.2), when the conditions mentioned in Proposition 21 are satisfied, reduces to the 
form 

~(F./x, Kxx+hx+N)+(Jx, F’(Jx+2K)+m’)+(vN+v’K, y)=O (4.1) 

Proposition 22. The operator F can be written in the form F = FtFz, where ei (i = 1,2, 3) are the 
eigenvectors of operators F, and Fz, the eigenvalues (p2i of operator F2 are constant, and the eigenvalues 
cpli of operators F1 are specified by the equalities (here (hii = (ei, Aej)) 

‘PG = exp(-2d A,:’ (~)~ii(~)~), i=l, 2, 3 

Proof. Separating out the terms with x2 from identity (4.1), we obtain the identity 

(4.2) 
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(Jx. F'Jx)+Z(FJx, Ax)+2(FIx. K. x)sO (4.3) 

Assuming x = e; here, we obtain 

cp; +2~;A,~h;; =0 

whence it~follows that cpi = Cpl;(Pzi, where (Pzi = const, and Cpi is specified by formula (4.2). 

We will represent the operator A in the form A = hl + AZ, where hl is the operator with eigenvectors 
and eigenvalues ei, hii (i = 1,2,3), then (ei, Azej) = h&l - 6~). 

Proposition 23. When a non-trivial quadratic integral exists when kz = 0, the following condition must 
be satisfied 

(4.5) 

Proof. Taking Proposition 22 into account, identity (4.3) takes the form 

This identity is equivalent to the system of conditions (4.5), which can be verified by decomposing, for example, 
x in the principal basis. 

Proposition 24. For a non-trivial quadratic integral to exist when k2 = 0 the following condition must 
be satisfied 

F,(N-K’)=O (4.6) 

and if the operator Fz is non-degenerate, we have 

N=K’ (4.7) 

P&f. Separating out terms that are linear in j, from identity (4.1), and taking Proposition 6 into account, we 
obtain the condition 

FNtF’S-(FK)‘=O 

or 

F(N-K')=O 

Hence, we obtain condition (4.6), since, in accordance with Proposition 22, F = F1F2, where F, is a non-degenerate 
operator. 

Proposition 25. For a quadratic integral to exist when k2 = 0 the following condition must be satisfied 

vN+v’K=O (4.8) 

and if the operator F2 is non degenerate, we have 

(vK)’ = 0 (4.9) 

Proof. By making terms with y vanish in identity (4.1), we obtain condition (4.8). By virtue of Proposition 24 
for the non-degenerate operator F2 we obtain condition (4.9). 

Proposition 26. The eigenvalues cpi and pi of the operators F and P3 in the quadratic integral when 
k2 5 0 can be represented in the form (2.9), (2.10). 

Proof. From (3.3) we obtain a representation for the eigenvalues Cpi of the operator F 

‘pi = Ai'yt, +yf2, i=l,2,3 

The condition for this system of three equation to be consistent for wI and ~2 has the form 
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(4.10) 

This condition is equivalent to the operator F being representable in the form (3.3) 
Replacing the vector identity (3.5) by three scalar identities, we obtain that this identity is only satisfied 

provided. 

L\P;=pq;ai, i= 1.2.3 (4.11) 

We put 

It follows from condition (4.10) that o, are related by condition (2.11). By virtue of Proposition 7,~; = const 
and then oi = const. The system of linear equations (4.11) in pl, p2 and p3 is consistent when condition (4.10) is 
satisfied; the set of its solutions can be written in the form 

Here x = const (by virtue of the fact that pi and cri are constant) and this term in pi can be omitted, since it gives 
the constant term xg: in the quadratic integral. 

Proposition 27. For a quadratic integral to exist when k2 = 0, condition (2.16) must be satisfied. 

Proof. Substituting representation ‘pi (2.9) into (4.4), we obtain condition (2.16). 

Note that conditions (2.14) and (2.15) are obtained from conditions (4.5) and (4.6) using repre- 
sentation (2.9). Hence, the necessity of the conditions presented in Theorem 2 and the representability 
of the integral in the form (2.8) or (2.17) are proved. The sufficiency of the set of these conditions follows 
from the fact that the fundamental identity is satisfied when they are consistent. 

5. PROOF OF THEOREM 3 

Proposition 28. The integral of the projection of the kinetic moment, if it exists in the case k2 = 0, can 
be written in the form 

v(Jx + K, y) = const (5.1) 

For it to exist it is necessary and sufficient for condition (2.22) and the condition to be satisfied. 

N = -(In v)‘K (5.2) 

When these conditions are satisfied the system can be reduced to the form (2.18). 

Proof. Putting \~ri = w2 = 0 in integral (2.17), we isolate integral (5.1). Conditions (2.12) and (2.13) when v it 0 
can be written in the form (2.32) and (5.2), and the remaining conditions of Theorem 2 when Oi = 0 (i = 1, 2, 3) 
are satisfied. The reducibility of the system to the form (2.18) where we takeS = vJ, K’ = vK, can be verified directly. 

Proposition 29. For two integrals, quadratic in the components of the angular velocity, to exist, it is 
necessary to satisfy the second and third conditions of (2.22) and the conditions 

A2 =0, (Inpai)‘=2h,,A,~‘, i=I,2,3 (5.3) 

Proof. By virtue of Theorem 2 these integrals can be written in the form (2.8). Taking representation (2.9) for 
the eigenvalues of the operator F into account, we obtain that independent sets of constants o;, satisfying condition 
(2.11), correspond to independent quadratic integrals. The solutions {oj”}, {o\*‘} are the basis for the set of solutions 
of Eq. (2.11) with three variables, where 

o!” = M I a!*) = A&4,,, i= 1.2,3 10. , (5.4) 

Here Ajo = A,(O). 
By requiring that condition (2.14) must be satisfied both for cr, = oj’) and cri = o$*‘, we obtain K = 0 and 

hi, = 0 when i # j, i.e. AZ = 0. From conditions (2.15) and (2.16) we now obtain the third condition of (2.22) and 
the second condition of (5.3). 
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Proposition 30. For three independent non-trivial quadratic integrals of the fundamental dynamic 
system to exist it is necessary for the last condition of (2.22) to be satisfied. The integrals can be written 
in the form (2.19)-(2.21). 

proaf. According to Theorem 2 any non-trivial quadratic integral can be written in the form (2.8) and is determined 
by the function v(t) and by the use of constant oi, related by condition (2.11). It then follows from the existence 
of three independent quadratic integrals that the integral of the projection of the kinetic moment (5.1) exists and, 
in accordance with Proposition 28, the necessity of satisfying the first condition of (2.22). From this condition and 
the second condition of (5.3) we obtainpv’a; = const. Assuming, without loss of generality, thatpavi = 1, we obtain 
the last condition of (2.22). 

For the specified formula (5.4) of the set or , (l) from conditions (2.9), (2.10) and the last condition of (2.22) we 
obtain the following expressions for the eigenvalues of the operators F and P3 

cp; = v*A,$ p; = A,,, -(A,, +A, +A,)/3 

which gives integral (2.19). 

For the set oj2) we similarly obtain 

cp; = v*, p; =-A,,,A20A30A,j’ +(A,,Aa +AloAm +A20A3,,)/3 

and the integral is written in the form (2.20). 

Theorem 3 is completely proved, since we have proved the necessity of conditions (2.22) for the 
existence of three independent non-trivial quadratic integrals and the sufficiency of the set of these 
conditions for integrals (2.19)-(2.21) to exist. Any non-trivial quadratic integral is a linear combination 
of these integrals. 

We will now describe the permissible laws of variation of the principal moments of inertia for the 
three quadratic integrals to exist. 

Proposition 31. When three independent non-trivial quadratic integrals exist, the inertia operator of 
the system can be represented in the form 

J = 0(C + tJE)-’ (5.5) 

where tr C = 0. 

Proof. Putting 

rk = -AjAjpv2 (i # j # k. if k) 

the last condition of (2.22) can be written in the form 

A<, = aiO, i = I. 2. 3 

The general solution of this system has the form 

6; =-%No +rl 

We obtain from formulae (5.6) 

(5.6) 

(5.7) 

2 -I 
A, = -AIA~A~Pv <k 

which also gives representation (5.5), where 13 = -A ,AzA3pv2, and, by formula (5.7), the eigenvalues of the operator 
C are -gAajo (i = 1, 2, 3). 

6. SIMPLIFICATION OF THE DYNAMICAL SYSTEM 
IN THE PRESENCE OF INTEGRALS 

We will indicate here the reductions to the autonomous system (2.4), (2.5) - when the conditions of 
Theorem 1 are satisfied, and to system (2.23) -when the conditions of Theorem 3 are satisfied, and we 
will prove Theorem 4, which gives the condition for reduction to system (2.26), integrable in quadratures. 

Proposition 32. When the conditions of Theorem 1 are satisfied, the fundamental dynamical system 
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reduces to the autonomous form (2.4), (2.5). Integral (2.2) of the initial system in this case can be written 
in the farm (2.7). 

Proof. 
pk;’ = 

When proving Proposition 19 we noted that Condition 2 of_?;heorem 1 is equivalent to the condition 
const and can be written in the form p = c&, where c3 = c2 . Taking into account Conditions 2-6 of 

Theorem 1, Eq. (1.8) can be written in the form 

Jo(x’-(lnk2)‘x)=(J~x+kpKo)xx+~3k22g3 xJog3 

Changing to the variables II and T, given by formulae (2.6), we obtain Eq. (2.4). Since*Condition 1 can be 
represented in the form (3.17), Eqs (1.9) can be written in the form (2.5). 

Changing to the variables (2.6) and taking into account representation (1.1) for the angular velocity B and the 
relations k3 = clk2, p = c&i, integral (2.2) is converted to the form (2.7). 

Proposition 33. When the conditions of Theorem 3 are satisfied, the fundamental dynamical system 
reduces to the form (2.23). 

proof. According to Proposition 28 the fundamental dynamical system reduces to the form (2.18), whence, taking 
into account the second condition of (2.22) and changing to the variable w, given by the first formula of (2.24), we 
obtain 

J()w’ = “-‘(Jow)x~J-‘Jow)+pvg~ xJg, 

g; = v-‘gg X(PJoW) 

(6.1) 

Note that the last condition of (2.22) is equivalent to the satisfaction of the identity * 

pv2J(Jx xx) = Jo(Jox x x) (6.2) 

This assertion can be verified by writing identity (6.2) in coordinate form. 
Using identity (6.2), the first equation of system (6.1) can be reduced to the form 

Jaw’ = p-‘v-%(Josw x Bw)+ v-‘&y x Joy). B = JOJ-’ (6.3) 

The following equation holds for the symmetrical operator B with eigenvalues pi and for arbitrary vectors 
b, and b? 

B(Bbj x Bbz) = P,P&b, xb2 

by taking which into account Eq. (6.3) and the second equation of system (6.1) can be written in the form (2.23). 

Theorem 4 is a consequence of Theorem 3 for the case of a similar change of the inertia operator. 
In fact, assuming J = hJo, formulae (2.24) can be written in the form 

w = hvx, & = df/(hV), p(hv)* = 1 

whence hv = p 4 and system (2.23) reduces to the form (2.26), and the integrals (2.19)-(2.21) can 
be written in the fdrm (2.28)-(2.30). The condition./ = hJo whenp(hv)2 = 1 can be written in the form 
of the first condition of (2.25), in which case the last condition of (2.22) is satisfied identically. The first 
condition of (2.22) takes the form of the last condition of (2.25). 
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