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A mechanical system, consisting of a non-variable rigid body (a carrier ) and a subsystem, the configuration and composition of
which may vary with time (the motion of its elements with respect to the carrier is specified), is considered. The system moves
in a central force field at a distance from its centre which considerably exceeds the dimensions of the system. The effect of
the system motion about the centre of mass on the motion of the centre of mass, which is assumed to be known, is ignored
(the analogue of the limited problem [1] for a rigid body). The necessary and sufficient conditions for a quadratic integral of the
motion around the centre of mass to exist are obtained in the case when there is no dynamic symmetry. It is shown that, for a
quadratic integral to exist, it is necessary that the trajectory of the motion of the centre of mass should be on the surface of a
certain circular cone, fixed in inertial space, with its vertex at the centre of the force field. If the trajectory does not lic on the
generatrix of the cone, only one non-trivial quadratic integral can exist and the initial system, in the presence of this quadratic
integral, reduces to autonomous form. For the motion of the centre of mass along the generatrix or the motion of the system
around a fixed centre of mass, the necessary and sufficient conditions for a non-trivial quadratic integral to exist are obtained,
which are generalizations of the energy integral, the de Brun integral [2] and the integral of the projection of the kinetic moment.
When three non-trivial quadratic integrals exist, the condition for reduction to an autonomous system describing the rotation
of the rigid body around the centre of mass and integrable in quadratures are indicated [3, 4]. © 2001 Elsevier Science Ltd. All
rights reserved.

1. THE EQUATIONS OF MOTION

Suppose Ey is an inertial frame of reference with origin at the centre O of a force field, £, is an orbital
frame of reference with origin at the centre of mass C of a mechanical system, E, is a frame of reference
connected with the carrier, and Ej; is the principal frame of reference with origin at the point C and
axes coinciding with the principal central axes of inertia of the system.

We will choose an orthobasis {g} of the frame of reference E; as follows: g5 = r', r = OC,
g = (rx (r);)% g = g x g3 Here ()} is the derivative with respect to time in frame of reference
E; and a” is the unit vector of the vector a. We can obtain the following formulae for the derivatives of
the unit vectors g; in frame of reference E

(8:)o = xg;, =123 Q=kg,+ke; (1.1)
Here
ky = 1EX (01772, ky = (0 (05, (05 [P () [ (1.2)
Putting ¥ = g, and denoting the velocity of the centre of the mass by v, we can also write
ky=v|yxdylds)| ky=v|yxdy/ds|? (y. dy/ds, d’y/ds®) (1.3)
In this limited problem the function r(¢) is specified in frame of reference E¢, and consequently, the
functions k,(¢) and k5(¢) are also specified. The position of the frame of reference E; with respect to
E, is also known at each instant of time.

The equations of rotational motion of the carrier of a system of variable composition are known [5].
Another form of these equations, proposed in [6, 7], has the form
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(y); =yXX20+M20+L, y=JX20 +Gz (1.4)

Here J is the inertia operator of the system at its centre of mass. x; is the angular velocity of the
frame of reference E; with respect to E;, L=M + Mf + (Gy)3, M = M + M, + M', M® and M, are
the principal moments (with respect to C) of the external and reactive forces, M* Is a certain control
moment, specified in E;, and

G, = Emr, x(x,), M/ =-Zmp,x(r,);" (15)

The summation is carried out over all elements of the system, m,, is the mass of the point mass M,
and r, = CM,,. The symmetrical operator A is given by the identity

AX=J'x-Em,[r) X(XXT,)+r, X(XXT,)]
The following equalities hold {7]
Jx;=G; -G, Ax;=M!-M/+(G));-(G); (1.6)

When the dimensions of the system are much less than the distance from its centre of mass to the
centre O of the field with potential U(r), the principal moment of the external forces is

=pyxJy, p=-r(r'U(n)y 1.7
System (1.4), in this case, taking into account properties (1.6), can be written in the form
Yy =yxx+Ax+pyxJy+N, y=Jx+K (1.8)
0" =03 X=X3, K=G;, N=M{+K"+M, +M"

For a Newtonian gravity field p = 3ur™>
Taking formulae (1.1) into account, we can supplement the system with Poisson’s equations

g =g x(x~Q), i=123 - (1.9)

System of equations (1.8) and (1.9), when there is no dynamic symmetry, will be called the fundamental
dynamical system.

2. BASIC RESULTS

Equations (1.9) have six trivial integrals
g,\2 = const, (g,-,gj) = const

We know [1], that in the case of the motion of a gyrostat in a Newtonian field in a circular orbit the
fundamental dynamical system has a quadratic integral (integral (2.2) with constants 7, k,, p = 3>
and k; = 0), while the motion of the rigid body around a fixed centre of mass possesses three non-trivial
quadratic integrals: the energy integral, the integral of the projection of the kinetic moment and the
de Brun integral [2] (integrals (2.28)—(2.30) with p = 3w and r = const).

The arbitrary quadratic integral of the fundamental dynamical system can be written in the form

3
(. Fy)+ X [(g;. Pg)) +(Qiy.8)+ (n;,g))+ (m,y) + h(r) +

i=1

+ (Rig2,83) + (R83.8)) + (R;8,,8,) = const (2.1)

Below we will solve the problem of obtaining the conditions for non-trivial quadratic integrals to exist
and we will obtain in explicit form the symmetrical operators F, P, the operators Q;, R;, and the
parameters n;, m and /. We will assume that the operators and parameters listed here are differentiable
functions of time.
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We will consider separately the case when k; = 0, corresponding to the centre of mass at rest in the
frame of reference Eg, or its motion along a straight line, fixed in E, passing through the centre of the
field, and the case when k; # 0.

Theorem 1. For a non-trivial quadratic integral of the fundamental dynamical system to exist in the
case when k; # 0 it is necessary and sufficient for the following conditions to be satisfied

1) the centre of mass of the system moves along the surface of an arbitrary circular cone, fixed in
inertial space, with vertex at the centre of the force field;

2) the velocity v of the centre of mass varies as follows:

1
vV =c, IpIA rPlrxdr/ds|”, ¢, =const

3) the inertia Joperator of the system varies similarly, J = nJy;
4) A=(n8) J,C=kn;

5) N=K;

6) K = (K,.

Here J; and K, are certain constant operators and vectors in the principal frame of reference. The integral
in this case can be written in the form

27 (%, Jgx) + p(¥. Jo¥) - 2(Jpx + kK, )] = const (2.2)
or, in equivalent form,
P (X3, dgX3) + p(v. Joy) - (0, 1) - 2k, (K, )] = const (2.3)

Condition 1 is satisfied, in particular, for any trajectory in a plane containing the centre of the force
field.

Note that, when the centre of mass C of the system moves along the surface of the cone indicated
in Condition 1, the orbital frame of reference E; chosen above has the following orientation: the unit
vector g, is directed along the tangent to the circular section of the cone, passing through the point C,
the.unit vector g, is directed along the normal to the surface of the cone and the unit vector g; is directed
along the generatrix of the cone.

For free motion of a point mass in a central field in a Kepler orbit with velocity v, we have
Ulr x dr/ds} = const, and Condition 2 for the velocity v of the controlled motion of the centre of mass
can be written in the form

. o2
v =const{p 1’5 rv,

When the conditions of Theorem 1 are satisfied, the system reduces to the following autonomous
form

Jodu/dt=(Jpu+Ko) X u+e38; X Jogs (2.9)
dg;/di=g,x(u-g, -cg;), i=123 (2.5)

Here the differentiation is in the frame of reference E3, ¢; = (cz)
u=x/ky, drv=kydt=|r"xdr (26)

It can be checked directly that the integral of system (2.4), (2.5) is the following integral, which is
identical with integral (2.2) (Proposition 32)

(v, Jou) +c3(g3, Jo83) — 2(Jsu+ Ky, 8, +¢18,) = const 27

It follows from Theorem 1 that, in the spemal case of the motion of a system of constant composmon
(A =0) in a Newtonian field (p = 3ur™?), for a quadratic integral to exist when k, # 0 it is necessary
and sufficient for Condition 1 of Theorem 1 to be satisfied and also the conditions

J=k'Jy, N=0, K=Kq, v =c,r" |rxdr/ds|"
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Theorem 2. If, when k, =0, a non-trivial quadratic integral of the fundamental dynamical system exists,
it can be represented in the form

(Jx, FIX)+ (v, By)+ v(Ix + K, ) = const (2.8)
The eigenvalues ¢; and ps; of the operators F and P; have the form
0, =(pa) "o, a;= AAA 29
psi = - J3A0; (2.10)
and the constants o; are related by the condition
G, +0,+0;=0 (2.11)

For the integral to exist it is necessary and sufficient for the following conditions to be
satisfied

VA+Vv/=0 (2.12)

W+Vv'K=0 (2.13)

A;j(0,84; +0;A4) = K© (0,84, - 0,845,  (i,).k) (2.14)
o,-(N—K‘)‘” =0, i=1,23 (2.15)

o,[(In pa;)* —2A;A7' =0, i=12,3 (2.16)

Here and henceforth
AA; = (A; - A8, (m)" =(m,e;)

Note that, for a quadratic integral in complete form (all o; # 0), condition (2.15) takes the same
form as in the problem of the motion of a system around a fixed point of a carrier in a uniform
gravitational field [8] and in the problem of free motion [7], N = K. This condition can be written in
the form

M{+M,+M" =0
Below we will show (Proposition 21), that integral (2.8) can be written in the form
V% J%)+ pCY. SN+ W [U%)7 = pA A A (v, 7 )]+
+ v(Jx+K,vy) =const 2.17)

Under certain conditions this integral can be expanded in three non-trivial quadratic integrals, which
are generalizations of the energy integral, the de Brun integral and the integral of the projection of the

kinetic moment.
When the integral of the projection of the kinetic moment exists, the system reduces to the form

(Proposition 28)
*=vxx+pyxJy, ¥ =yxx, v=J%x+K’ (2.18)

Theorem 3. If, when k; = 0, three independent non-trivial quadratic integrals of the fundamental
dynamical system exist, they can be written in the form

vz(.lx, Jg'Jx)+('y,Jo'y) = const (2.19)
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(vIx)? - AjpArxAsp(y, JJ"y) = const (2.20)

v(Jx,vy) =const (2.21)
For these integrals to exist it is necessary and sufficient for the following conditions to be satisfied
=-(lnv)*J, K=0, N=0, pvia, =a4 i=123 (2.22)

When the conditions of this theorem are satisfied or, which is the same thing, when there are three
non-trivial quadratic integrals, the system can be reduced to the form

d -
.107‘:—=(JOW)XW+U oy x Joy), Z—:=7cy><.l"low (2.23)

where the differentiation is carried out in the frame of reference £3 and

2 AAA,

w=v/;'Ux, di= it— A=pv
Av AjpAnAsg

(2.24)

WhenJ = AJ;, we obtain the well-known autonomous system, integrable in quadratures [3, 4], which
describes the rotation of a rigid body around a fixed centre of mass.

Theorem 4. When k, = 0 and the conditions K = 0, N = 0 are satisfied as well as the conditions

J=(pv) %y, A=-(pv)) P(In V) ), (2.25)

the fundamental dynamical system can be reduced to the autonomous system

dz dy
Jo—=(Jo2)X2+yYXJyy, —>=vX 2.26
e (Joz)xz+Y¥XJyy e YXz ( )

z=p /x, di=plds (2.27)

When the conditions of Theorem 4 are satisfied, integrals (2.19)-(2.21) can be written in the form

p"(Jox,x)+('y, Jov) = const (2.28)
P~ (JgX)? = AjpAzAs (v, J5'y) = const (2.29)
p~/2(Jox,v) = const (2.30)

3. PROOF OF THEOREM 1

Proposition 1. The operators P, and P, are proportional to the identity operator E.

Proof. Differentiating integral (2.1), by virtue of the fundamental dynamical system we obtain an identity which
we will call the fundamental identity (we will not write it here due to its length). Separating out, in this identity,
terms with g,x, we obtain the identity (P18, g, x) = 0, which is only satisfied when P, = @(¢)E. Equating the terms
with g,x to zero we obtain the condition P, = v(?)E.

Proposition 2. The operators R; (i = 1, 2, 3,) are proportional to the identity operator.

Proof. Separating out, in the fundamental identity, the terms with g;g,x (taking into account the fact that
g1 X g; = g3), we obtain the following identity (B* is the operator conjugate to B)

(R3g2)% g +(Ryg))xg2 =0

This identity is only satisfied if R; = kE. In the same way we can obtain similar representations for the operators
R] and Rz.
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Proposition 3. The operators Q; have the form
0,=0, Q;=V,E, i=2,3
Proof. The following identity is obtained from the fundamental identity by separating out terms with x’g,
(Qr'g). Jx.x)+(Q Jx,8.x) =0
that is equivalent to the identity
Qi(Ixxx)+xxQJx=0
which is only satisﬁéd if O, = v,E. Equating terms with x’g, and x’g; to zero in the fundamental identity we obtain

the conditions Q; = v;E (i = 2, 3). If we now separate out, in the fundamental identity, the terms with g,g;, we
obtain the identity

pviga X Jg3 =0

which, when p # 0, is only satisfied if v; = 0.

Note that when there are trivial integrals, the terms (g, P1g;), (8, P2g>) in integral (2.1), by virtue
of Proposition 1, are equal to ¢(f) and v(t) respectively, and they can be included in the term A(¢). Terms
of the form (R,g;, g) are equal to zero by virtue of Proposition 2.

Integral (2.1) and the fundamental identity can now be written in the form

3
(y,Fy)+(83, Pigy) + (¥, V282 + Va83) + X (m;,8;)+(m,y) +h = const 3.1)
i=1
(2Fy +m,y X x + Ax + pg3 x Jg; + N) + pv,(g,.Jg;) +
+ (2Pg; + 03,83, X) +(V,8; + V383, Ax+ N) +
+ k,(2Pgy + ny,g8)) +(ny,8),X) — ky(ny,8)) —(my, 8y, X) ~
~ ky(ny,83)+ k3(ny,8,) +(Vaky — Voks )(y.8))+ (¥, F'y) +

3
+ (83, P 83) +(y, V38, +Vigy)+ T (n].g)+(m",y)+h" =0 (3.2)
i=]

Proposition 4. The operator F can be represented in the form
F=yJ' +y,E (3.3)
Proof. Separating out terms with x* from identity (3.2), we obtain the identity
(FIx,Jx,x)=0

which, when the eigenvalues, A; of the operator J are not equal to one another, is satisfied if and only
if the operator F has the form (3.3).

Proposition 5. The operator P; can be represented in the form
Py = p(yJ-W,A 1AA) 7)) (3.4)
Proof. Grouping the terms with xg3 in identity (3.2), we obtain the identity
p{FJx.g3.Jg3)+(Psg3.83.%)=0
which can be written in the equivalent form
pIF(g3 x Jg3)=g3 x gy (3:3)

Assuming g; = e;, we obtain (Pse;) x e; = 0, and then ¢; (i = 1, 2, 3) are the eigenvectors of the operator P;.
Taking Proposition 4 into account, we can rewrite identity (3.5) in the form
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plv 83 X Jgs + W (J2g3) X g3 + W trJ(g3 X Jg3)l=g3 X Pigy (3:6)
Here we have used the equality
D(axb)=(D’b)xa+bx D’a+tr D(axb)
Identity (3.6) is only satisfied if the operator P, has the form
Py = p(yyJ = yoJ? +yy Jir J)+kE
Since
J2—Jtrd = A AyAyd ™ —(AjAy + AjAy + AyA3)E (3.7)

we obtain representation (3.4) for the operator P3. The term KE gives the function k(¢), which can be included in
the term A(t) in integral (2.1).

Proposition 6. The parameter m has the form
m =-2FK (3.8)
Proposition 7. The operator P; is constant in the frame of reference E;.
Proof. Taking into account the fact thaty = Jx + K, we collect terms with g3 in identity (3.2)
p(2FK+m.g;.Jg3) +(83.Pg3) =0
It follows from Proposition 5 that e; are the eigenvectors of the operator P;. Substituting g; = e; into the last

identity, we obtain (e;, P3e;) = 0 (! = 1, 2, 3), whence Proposition 7 follows. The identity considered takes the
form.

(2FK+m,g;,Jg3)=0
which is possible for pairwise different 4;, only if 2Fk + m = 0.
Proposition 8. The following representation holds
(y, Fy) + (m, y) + h(r) = (Jx, FJx) + const (3.9)

Proof. Taking Proposition 6 into account in identity (3.2) we separate out terms not containing x
and g;

(K.FPK)+(m",K)+h* =0
Hence
A ==K, FK)+2((FK)* . K)=(K,FK)" and h=(K,FK)+con
The left-hand side of (3.9) can now be written in the form
(Jx+K,FJx+ FK)-2(FK.Jx + K) + (K, FK) + const
which is identical with the right-hand side of this equation.
Proposition 9. For integral (2.1) to exist it is necessary for the following conditions to be satisfied
vy ==2kyy . (3.10)
kay, =0 (3.11)
Proof. Separating out terms with g, g5 in identity (3.2), we obtain

pVZ(gl.Jg3)+2k2(P3g3,gl) =0
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This identity is only satisfied if pv,J + 2k,P; = 0. Taking Proposition 5 into account, we obtain the
condition

VoJ +2ky (W - WoA AgAd )= 0

Since all the eigenvalues of the operator J are different, this equality is only possible when conditions (3.10)
and (3.11) are satisfied.

Proposition 10. When k, # 0, the operators F and P; have the form
F=wyJ?, Py=pyJ (3.12)
The proof follows from Propositions 4, 5 and 9.
Proposition 11. For integral (2.1) to exist, the following conditions must be satisfied
n =0 (3.13)
k3vy = kyvs (3.14)
Proof. Separating out terms with g;x in identity (3.2), we obtain the identity
| (ny.8).x) +(kav3 —k3v)(Ix,81) =0
which is only satisfied when conditions (3.13) and (3.14) are satisfied.

Proposition 12. For integral (2.1) to exist, the following conditions must be satisfied (for i =
2,3)

n;=0 (3.15)

i
VA+ViJ=0 (3.16)
Proof. Grouping terms with gx and gsx in identity (3.2), we obtain the identities
v (g AX)+(n;,g, . X)+V;(Jx.g,)=0, i=2,3
These identities are equivalent to the following
V,AX +ViIx+xXn; =0

Since the operators A and J are symmetrical, the last identities are satisfied only when conditions (3.15) and
(3.16) are satisfied.

Proposition 13. When k; # 0 the following representation holds
V,'= —Zkiwl, l = 2, 3
The proof follows from conditions (3.10) and (3.14).

Proposition 14. For integral (2.1) to exist, Condition 4 of Theorem 1 and the following condition must
be satisfied

k3 = Clkz (317)

Proof. It follows from conditions (3.16) and Proposition 13 that (ks/k,)"J = 0, whence we obtain condition (3.17).
When this condition is satisfied the two conditions (3.16) are equivalent to Condition 4 of Theorem 1, where

n= (/(22\P|)—l (3.18)

Proposition 15. Condition (3.17) is satisfied if and only if the angular velocity of the orbital frame of
reference has the form
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Q = kysin~'oe (3.19)

the uinit vectar of an arhitrarv direction fived in fra ames Gf refe e F and F. Whan thic
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condition is satisfied, the centre of mass is shifted along the surface of a right circular cone, fixed in
inertial space, with vertex at the centre of the force field and with an angle o between the generatrix
and the axis of the cone, the direction of which is specified by the unit vector e.

Proof. Suppose k3 = c1k; and kp # 0. Then, taking formulae (1.1) into account, we obtain

(/ky)y = (82 +¢183)p = X (g +0183) =D x(E/k3)=0

Consequently, when condition (3.17) is satisfied we can write

Q=koa, (a)y=0 (3.20)

Hence, the angular velocity Q maintains its direction in E, but it then also has a constant direction in E,. The
orhital frame of refarance. bheino disnlaced tocethar with a cantre of macg of the cuctem rotateg around the fived
orbital frame of reference, being displaced together with a centre of mass of the system, rotates around the fixed

d‘lrlf/}:ltjllct)ir;);ing Eq. (1.1) scalarly by a for g =, we obtain (a, 'y) = 0, and consequently, the angle between
v and a is consiant and the trajeciory of the centre of mass lies on a cone wiih veriex ai the cenire of the
ﬁel\c?iv‘e put (a, ¥) = a cos o = ¢ and transform condition (3.17). By virtue of formulae (1.2) we obtain
ko =]y X (v)o I=ky |y x(axy)|=kyla-cy|=kpasina
Hence it follows that the constants a and o are related by the condition

asinoa=] (3.21)
which also enables us to represent the angular velocity Q in the form (3.19). Further
kg = kz'z(-y. (¥)o- ('y)b'> =ky(y. axy. ax(axy))=ky(a-cy. ca)= cky(a® - c?) = ckpa®sin® o

and, taking into account relation (3.21), we obtain k3 = ck;. Consequently, when condition (3.19) is satisfied the
functions k4 and k, are proportional, where ¢| = c.

Taking into account the propositions proved above, identity (3.2) can be written in the form

N+ (Jx. (w,J 7Y ) +2(K, (w,J 7Y Ux) +

+H(V3g, + Vigs. K)=2((y,J'K), Jx)=0 (3.22)

Proposition 16. For 1ntegral (2.1) to exist, Condition 5 of Theorem 1 must be satisfied.

yN+(y /™) JK = Iy JT'K) =0

which reduces to the form y;{N-K") = 0. Hence we obtain condition 5, since the case y; = 0 is eliminated when
ky # 0. In fact, when y; = 0, it follows from Propositions 3 and 9-11 that F = P; = v, = v; = 0, and quadratic
integral (3.1) does not exist.

vN+viK=0, i=2.3

which, by virtue of Proposition

1
and (3 18) into account, both thes
of condition 6 follows.

> e l“l

cal
ese conditions can be w ritten in the form ((kzn)“ K’

n be written in the form {\1 K) =0. Tnl(mu Prnnns_t ion 13 and form ]ag (3. 17\

Proposition 18. For integral (2.1) to exist, Condition 3 of Theorem 1 must be satisfied.

Prnnf Sen 2'.!'2."!0 out terms with x° from iden tity (’1 77\ we gbtain the condition
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2y A+(yJ ) I2 =0
Substituting the expression for A from condition 4 here, we obtain (n~'J)" = 0, whence the necessity of Condition

3 follows.

Proposition 19. Integral (2.1) exists only if the velocnty of the centre of mass of the system satisfies
Condition 2 of Theorem 1. 4

Proof. By Propositions 7 and 10

(pyi )" =0

Takmg Condition 3 into account, where the parameter 1 is given by formula (3.18), we obtain the relation
pk3% = const, whence Condition 2 also follows. ;

Proposition 20. If integral (2.1) to exist, it can be written in the form (2.2) or (2.3).

Proof. Integral (2.1) can be reduced to the form (3.1), when, taking into account Proposition 8, 10-13 and
representation (1.1) for the absolute angular velocity Q of the orbital system, we obtain the following form of the
integral

yl(x, Jx)+p(y. Jy)-20Jx+K, 2)]=const : (3.23)
Taking into account the relation x = x3; + &, we can write this integral in the form
Vil(xyy, Jxy)+ ply. Jy) -2, JO)-2(K, £)]=const y (3.24)
We can change to the forms (2.2} and (2.3) if we take into account Conditions 3 and 6 of Theorem 1, expression
(3.18) and the relation pk; 2 = const, pointed out in the proof of Proposition 18.

It was shown above that Conditions 1-6 are necessary for non-trivial integral (2.1) to exist. These
conditions are sufficient for the integral to exist, since the fundamental identity holds when they are
satisfied. The sufficiency of these conditions also follows from the existence of integral (2.7) of system
(2.4), (2.5), to which the initial system reduces (Proposition 32) when there is a non-trivial quadratic
integral. Theorem 1 is completely proved.

4. PROOF OF THEOREM 2

We will now consider the case when k, = 0.

Proposition 21. For a non-trivial quadratic integral to exist in the case when ky = 0 it is necessary
that the operators F and P; should have the form (3.3), (3.4), and the condition P; = 0 and condition
(3.16) should be satisfied (for i = 3). In this case the integral can be written in the form (2.8) or in the
form (2.17).

Proof. Proposition 1-9, 11 and 12 are also retained when k; = 0. It follows from condition (3.10) that v, = 0,
and condition (3.16) is identically satisfied for i = 2. Integral (2.1), taking Proposition 8 into account, can be written
in the form (2.8), by putting v = v;. If we use representation (3.3) and (3.4) for the operators F and P;, the integral
can be written in the form (2.17).

Identity (3.2), when the conditions mentioned in Proposition 21 are satisfied, reduces to the
form

2(FJx, Kxx+Ax+N)+(Jx, F'(Jx+2K)+m")+(VWN+V'K, y)=0 4.1)
Proposition 22. The operator F can be written in the form F = FF,, where ¢; (i = 1, 2, 3) are the

eigenvectors of operators Fj and F,, the eigenvalues ¢,; of operator F, are constant and the eigenvalues
@; of operators F; are specified by the equalities (here (A; = (e;, Ae)))

oy =exp(=2] A7 @AEM), i=1, 2, 3 (42)
a .

Proof. Separating out the terms with x? from identity (4.1), we obtain the identity
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(Jx. F Ix)+2(FIx, Ax)+2(FJx. K, x)=0 (4.3)

Assuming x = ¢; here, we obtain
0; +20,A7'%,; =0 (@4)
whence it follows that @; = ¢,;¢,;, where @,; = const, and ¢; is specified by formula (4.2).

- N e

r Ain the form A = Ay + A, where A, is the operator with eigenveciors

at
1,2, 3), then (e;, Aze)) = Ai(1 - .,)

‘We will represent the op
and eigenvalues e, A; (i =

Proposition 23. When a non-trivial quadratic integral exists when &, = 0, the following condition must
be satisfied

Ai(A®;+A;0,)=K¥ (A0 - A0;)8; (i) k) (4.5)

Proof. Taking Proposition 22 into account, identity (4.3) takes the form

This identity is equwalent to the system of conditions (4.5), which can be verified by decomposing, for example,
X ll'l lne pnnClpal Ddblb

Proposition 24. For a non-trivial quadratic integral to exist when &, = 0 the following condition must
be satisfied

F(N-K") (4.6)
FAS 0 vy

and if the operator F, is non-degenerate, we have
N=K’ : CY))]

Proof. Separating out terms that are linear in x from identity (4.1}, and taking Proposition 6 into account, we
obtain the condition

N+ FK-(FK) =0
or
FIN-K")=0

Hence, we obtain condition (4.6), since, in accordance with rroposmo 2, F = F\F,, where F is a non-degenerate
operator. '

Proposition 25. For a quadratic integral to exist when k;, = 0 the following condition must be satisfied

N 4 v =0 {4 )
. v \WnU’

Pred

i v Am

and if the operator F, is non degenerate, we have
(VK)' =0 (4.9)

Proof. By making terms with vy vanish in identity (4.1), we obtain condition (4.8). By virtue of Proposition 24
for the non-degenerate operator F, we obtain condition (4.9).

Proposition 26. The eigenvalues ¢; and p; of the operators F and P3 in the quadratic integral when
k; = 0 can be represented in the form (2.9), (2.10). R v

Proof. From (3.3) we obtain a representation for the eigenvalues @; of the operator F
9 =AW +yy. i=12.3

The condition for this system of three equation to be consistent for y, and y; has the form
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012 + P2ay + 93a3=0 (4.10)

This condition is equivalent to the operator F being representable in the form (3.3)
Replacing the vector identity (3.5) by three scalar identities, we obtain that this identity is only satisfied
provided.

Ap;=p@;a;, i=1,2,3 (4.11)
We put
C;=po:a;

It follows from condition (4.10) that o; are related by condition (2.11). By virtue of Proposition 7, p; = const
and then o; = const. The system of linear equations (4.11) in p;, p; and p; is consistent when condition (4.10) is
satisfied; the set of its solutions can be written in the form

P == 340, +X
Here x = const (by virtue of the fact that p; and o; are constant) and this term in p; can be omitted, since it gives
the constant term xg3 in the quadratic integral.
Proposition 27. For a quadratic integral to exist when k, = 0, condition (2.16) must be satisfied.
Proof. Substituting representation @; (2.9) into (4.4), we obtain condition (2.16).

Note that conditions (2.14) and (2.15) are obtained from conditions (4.5) and (4.6) using repre-
sentation (2.9). Hence, the necessity of the conditions presented in Theorem 2 and the representability
of the integral in the form (2.8) or (2.17) are proved. The sufficiency of the set of these conditions follows
from the fact that the fundamental identity is satisfied when they are consistent.

5. PROOF OF THEOREM 3

Proposition 28. The integral of the projection of the kinetic moment, if it exists in the case k; = 0, can
be written in the form

v(JUx + K, y) = const 5.1)
For it to exist it is necessary and sufficient for condition (2.22) and the condition to be satisfied.
N=—(Inv)K (52)

When these conditions are satisfied the system can be reduced to the form (2.18).

Proof. Putting v, = y, = 0 in integral (2.17), we isolate integral (5.1). Conditions (2.12) and (2.13) when v # 0
can be written in the form (2.32) and (5.2), and the remaining conditions of Theorem 2 wheng; =0 (i = 1,2, 3)
are satisfied. The reducibility of the system to the form (2.18), where we takeJ’ = v/, K’ = VK, can be verified directly.

Proposition 29. For two integrals, quadratic in the components of the angular velocity, to exist, it is
necessary to satisfy the second and third conditions of (2.22) and the conditions

A, =0, (Inpa) =20;A7, i=1,2,3 (5.3)

Proof. By virtue of Theorem 2 these integrals can be written in the form (2.8). Taking representation (2.9) for
the eigenvalues of the operator F into account, we obtain that independent sets of constants o, satisfying condition
(2.11), correspond to independent quadratic integrals. The solutions {oiV}, {o'?} are the basis for the set of solutions
of Eq. (2.11) with three variables, where

ol = A4, o!P =4AA,, i=1,2.3 (54

¥ ¢

Here A;y = A;(0).

By requiring that condition (2.14) must be satisfied both for o; = ot and 6; = o, we obtain K = 0 and
%; = Owheni# j,ie. A; = 0. From conditions (2.15) and (2.16) we now obtain the third condition of (2.22) and
the second condition of (5.3).
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Proposition 30. For three independent non-trivial quadratic integrals of the fundamental dynamic
system to exist it is necessary for the last condition of (2.22) to be satisfied. The integrals can be written
in the form (2.19)-(2.21).

Proof. According to Theorem 2 any non-trivial quadratic integral can be written in the form (2.8) and is determined
by the function v(r) and by the use of constant o, related by condition (2.11). It then follows from the existence
of three independent quadratic integrals that the integral of the projection of the kinetic moment (5.1) exists and,
in accordance with Proposition 28, the necessity of satisfying the first condition of (2.22). From this condition and
the second condition of (5.3) we obtain pv’a; = const. Assuming, without loss of generality, that pgv§ = 1, we obtain
the last condition of (2.22).

For the specified formula (5.4) of the set 6, from conditions (2.9), (2.10) and the last condition of (2.22) we
obtain the following expressions for the eigenvalues of the operators F and P;

@, = VA pi=Ajg—(Ajg+Ax +Az)/3
which gives integral (2.19).
For the set 6{® we similarly obtain
0; = V2, p; =—AAnAsnAn +(AgAxp +ApAs +AxnAs)/3
and the integral is written in the form (2.20).

Theorem 3 is completely proved, since we have proved the necessity of conditions (2.22) for the
existence of three independent non-trivial quadratic integrals and the sufficiency of the set of these
conditions for integrals (2.19)-(2.21) to exist. Any non-trivial quadratic integral is a linear combination
of these integrals.

We will now describe the permissible laws of variation of the principal moments of inertia for the
three quadratic integrals to exist.

Proposition 31. When three independent non-trivial quadratic integrals exist, the inertia operator of
the system can be represented in the form

J=8(C +nE)! (5.5)

where tr C = 0.
Proof. Putting

Ci =—A,-A,~pv2 (i2j#k izk) (5.6)
the last condition of (2.22) can be written in the form
AL, =ay. i=1,2,3
The general solution of this system has the form
§i=~Ysha0+n (5.7
We obtain from formulae (5.6)
Ay ==A Ay A3 pv2Ly!
which also gives representation (5.5), where 8 = —4,4,43pv*, and, by formula (5.7), the eigenvalues of the operator

Care —YAay (i = 1,2, 3).

6. SIMPLIFICATION OF THE DYNAMICAL SYSTEM
IN THE PRESENCE OF INTEGRALS

We will indicate here the reductions to the autonomous system (2.4), (2.5) — when the conditions of
Theorem 1 are satisfied, and to system (2.23) — when the conditions of Theorem 3 are satisfied, and we
will prove Theorem 4, which gives the condition for reduction to system (2.26), integrable in quadratures.

Proposition 32. When the conditions of Theorem 1 are satisfied, the fundamental dynamical system
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reduces to.the autonomous form (2.4), (2.5). Integral (2.2) of the initial system in this case can be written
in the form (2.7).

Proof When proving Proposition 19 we noted that Condition 2 of Theorem 1 is equivalent to the condition
pky? = const and can be written in the form p = c3k3, where ¢; = ¢5 % Taking into account Conditions 2-6 of
Theorem 1, Eq. (1.8) can be written in. the form

Jo(X" =(Inky)"x) = (Jox + kKo ) X x + c3kZg3 X Jog3

Changing to the variables u and T, given by formulae (2.6), we obtain Eq. (2.4). Since: Condition 1 can be
represented in the form (3 17), Eqs (1 9) can be written in the form 2. 5).

Changing to the vanaoles (2.6) and [ang into account representation (1.1) for the angular velocity Q and the
relations k; = c,ka, p = c5k3, integral (2.2) is converted to the form (2.7).

Proposition 33. When the conditions of Theorem 3 are satisfied, the fundamental dynamical system
reduces to the form (2.23).

Proof. According to Proposition 28 the fundamental dynamical system reduces to the form (2.18), whence, taking
into account the second condition of (2.22) and changing to the variable w, given by the first formula of (2.24), we
obtain

Jow' = v (Jgwyx (T Jgw)+ pvgs x Jg5 (6.1)
g5 =v'ggx(J pw)
Note that the last condition of (2.22) is equivalent to the satisfaction of the identity
pV2I(Uxxx) = Jy(Jpx X X) (6.2)

This assertion can be verified by writing identity (6.2) in coordinate form.
Using identity (6.2), the first equation of system (6.1) can be reduced to the form

Jow" = p v 3B(JoBwx Bw)+ v B(yx Jyy). B=JoJ”! (6.3)

The following equation holds for the symmetrical operator B with eigenvalues 3; and for arbitrary vectors
bl and b2

B(Bb, x Bb,) =,B;B3b; x b,

by taking which into account Eq. (6.3) and the second equation of system (6.1) can be written in the form (2.23).

Theorem 4 is a consequence of Theorem 3 for the case of a similar change of the inertia operator.

R ¢ faa

in IaCI, assumlng.l = l\.Jo, IOl'Il'luldC (L 24) can DC WIIen in the I()l'm
w=Avx, dT=dt/(Av), p(Av)2=1

whence Av = /2 , and system (2.23) reduces to the form (2.26), and _the integrals (2 19)—(2 21) can

L~ L-t Téo o 13N qn\ Tha ndit T =13 sham )4\ 1 n ha tha fo
oc wuu.cu lll the torm (2.26 —\L DU e L/Ullull.lull.l = l\..lo wu\,uy\l\.\/) = 1 can be written in the form

of the first condition of (2.25), in which case the last condition of (2.22) is satisfied identically. The first
condition of (2.22) takes the form of the last condition of (2.25).
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